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Abstract—We study the existence of nodal solutions of a parametrized family of Dirichlet
boundary value problems for elliptic equations with convex-concave nonlinearities. In the main
result, we prove the existence of nodal solutions uλ for λ ∈ (−∞, λ∗0). The critical value λ∗0 > 0
is found by a spectral analysis procedure according to Pokhozhaev’s fibering method. We show
that the obtained solutions form a continuous branch (in the sense of level lines of the energy
functional) with respect to the parameter λ. Moreover, we prove the existence of an interval
(−∞, λ̃), where λ̃ > 0, on which this branch consists of solutions with exactly two nodal domains.
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INTRODUCTION

In a bounded domain Ω ⊂ Rn, n ≥ 1, with piecewise smooth boundary ∂Ω, consider the Dirichlet
problem

−∆u = λk(x)|u|q−2u + h(x)|u|γ−2u, x ∈ Ω, u = 0, x ∈ ∂Ω. (1)

We assume that the weight functions k(x), h(x) ∈ L∞(Ω) satisfy the conditions

ess inf
x∈Ω

k(x) > 0, ess inf
x∈Ω

h(x) > 0, (2)

λ ∈ R, and
1 < q < 2 < γ < 2∗, 2∗ =

{
2n/(n− 2) if n > 2,
+∞ if n ≤ 2. (3)

Under conditions (2) and (3), the nonlinearity in the problem is said to be convex-concave (see [1]).
Problems of the type (1) arise in various fields of mathematical physics: in the study of

anisotropic media [2], in the description of a flow on a impermeable plate [3], in the description
of the superdiffusion phenomenon, etc. (see the bibliography in [2]) as well as in models of pop-
ulation dynamics. They play an important role in the study of systems of the activator–inhibitor
type in the modeling of biological pattern formation processes [4] and can be viewed as a variant
of the stationary equation for the population density flow in the Patlak–Keller–Segel chemotaxis
model [5].

Starting from [1], numerous papers (e.g., see [1, 2, 6–8]) deal with the existence of positive
solutions, multiple positive solutions, several solutions, and infinitely many solutions for problems
of the form (1).

In addition, the interest in problems of the existence of nodal solutions of nonlinear elliptic
equations [9–12] has recently been growing. This is caused by the fact that nodal solutions arise
in applications [12]. Moreover, the interest in the study of nodal solutions is related to a number
of well-known unsolved problems of nonlinear analysis, such as determining the number of nodal
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766 BOBKOV

domains and geometric properties of nodal sets of solutions [13], the problem of the generalization of
the Courant theorem on zeros of eigenfunctions to nonlinear problems [14, Chap. 6, item 6; 15], and
the close so-called optimal partition problem [16]. Note also that well-known topological methods
like the Lyusternik–Schnirelmann theorem [6] permit one to prove the existence of countably many
solutions of nonlinear elliptic equations but do not provide complete information on their structure,
i.e., changing of the sign, the number of nodal domains, geometric properties of nodal sets, etc.

The Nehari manifold method (see [17, 18]) is one of the most efficient and most often used
methods for proving the existence of nodal solutions. At the same time, Pokhozhaev’s global
fibering method [19, 20], which is more efficient when studying parametrized problems, proving the
existence of branches of solutions, and analyzing bifurcations, is more widely used in the Russian
mathematical school.

The present paper deals with the existence of nodal solutions of problem (1). Special attention is
paid to finding solutions with exact number of nodal domains (with two nodal domains) and to the
construction of the corresponding continuous (in the sense of level lines of the energy functional)
branch of solutions.

Note that the well-known papers on the theory of nodal solutions and solutions with exact
number of nodal domains use approaches based on the fact that, in considered classes of problems,
all possible solutions only correspond to nonnegative levels of the energy functional. The main
difficulty in the search of nodal solutions of problem (1) is related to the fact that the solutions of
problem (1) can correspond to arbitrary signs of levels of the energy functional.

Let us state the main results of the present paper. We consider weak solutions of problem (1),
that is, functions u ∈ W 1,2

0 (Ω)\{0} that are critical points of the energy functional

Iλ(u) =
1
2
H(u)− λ

q
G(u)− 1

γ
F (u),

where
H(u) =

∫

Ω

|∇u|2 dx, G(u) =
∫

Ω

k(x)|u|q dx, F (u) =
∫

Ω

h(x)|u|γ dx.

In particular, any weak solution u satisfies the relation

Qλ(u) = DuIλ(u)(u) = H(u)− λG(u)− F (u) = 0,

i.e., belongs to the Nehari manifold

Nλ = {v ∈ W 1,2
0 (Ω)\{0} : Qλ(v) = 0}.

Il’yasov [6] used spectral analysis by Pokhozhaev’s fibering method [19, 21], introduced the
critical value λ∗0 defined by the variational problem

λ∗0 =
q(γ − 2)
γ(2− q)

(
γ(2− q)
2(γ − q)

)(γ−q)/(γ−2)

inf
v∈W\{0}

(
H(γ−q)/(γ−2)(v)

G(v)F (2−q)/(γ−2)(v)

)
, (4)

and showed that, for all λ ∈ (0, λ∗0), the Nehari manifold consists of two disjoint components
separated by the sign of the functional Lλ defined by the relation

Lλ(u) = D2
uuIλ(u)(u, u) = H(u)− λ(q − 1)G(u)− (γ − 1)F (u).

A nodal solution u ∈ W 1,2
0 (Ω) of problem (1) is defined as a weak solution such that

u+ := max{u, 0} 6= 0, u− := min{0, u} 6= 0.

In this case, the set M = {x ∈ Ω : u(x) = 0} is referred to as a nodal set, and the connected
components (maximal connected subsets) of the set Ω\M are referred to as nodal domains (for the
terminology, see [14, p. 429; 16]).
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ON THE EXISTENCE OF A CONTINUOUS BRANCH OF NODAL SOLUTIONS 767

Consider the following subset of nodal functions in Nλ :

N 1
λ = {v ∈ Nλ : v+ ∈ Nλ, v− ∈ Nλ, Lλ(v+) < 0, Lλ(v−) < 0}.

A weak solution uλ ∈ N 1
λ of problem (1) is referred to as a ground state with respect to N 1

λ if

Iλ(uλ) ≤ Iλ(v), v ∈ N 1
λ .

The following assertion is the main result of the present paper.

Theorem 1. Let 1 < q < 2 < γ < 2∗. Then for each λ ∈ (−∞, λ∗0), there exists a nodal solution
uλ = u+

λ + u−λ of problem (1) such that uλ ∈ N 1
λ . Furthermore, uλ is a ground state with respect

to N 1
λ .

We say that the family of critical points uλ of the functional Iλ forms a continuous branch of
solutions along level lines of Iλ on the interval (a, b) if the mapping

I(·)(u(·)) : (a, b) → R

is a continuous function.

Theorem 2. Let 1 < q < 2 < γ < 2∗. Then the set of ground states uλ of problem (1) with
respect to N 1

λ is a continuous branch of solutions along the level lines of Iλ on the interval (−∞, λ∗0).

Theorem 3. Let 1 < q < 2 < γ < 2∗. Then there exists λ̃ > 0 such that each ground state uλ

of problem (1) with respect to N 1
λ for λ ∈ (−∞, min{λ̃, λ∗0}) has exactly two nodal domains.

1. ANALYSIS OF THE FUNCTIONAL Iλ BY THE FIBERING METHOD

A fibration of the functional Iλ(u), u ∈ W 1,2
0 (Ω), is defined as an extended, to R+ ×W 1,2

0 (Ω),
functional Ĩλ(t, u) = Iλ(tu), where t > 0; in addition,

Qλ(u) =
∂

∂t
Iλ(tu)|t=1, Lλ(u) =

∂2

∂t2
Iλ(tu)|t=1.

Note that the variational problem (4) for λ∗0 can be obtained from the system

1
2

t2H(u)− λ

q
tqG(u)− 1

γ
tγF (u) = 0, tH(u)− λtq−1G(u)− tγ−1F (u) = 0,

which corresponds to the case in which Iλ(tu) = 0 and Qλ(tu) = 0, for an arbitrary function
u ∈ W 1,2

0 (Ω)\{0}. By solving this system for λ = λ(u) and t = t(u), we obtain

λ(u) =
q(γ − 2)
γ(2− q)

(
γ(2− q)
2(γ − q)

)(γ−q)/(γ−2)
H(γ−q)/(γ−2)(u)

G(v)F (2−q)/(γ−2)(u)
. (5)

Next, following [6], from (5), we obtain the critical value (4).
The following assertion was proved in [6].

Proposition 1. Let 1 < q < 2 < γ < 2∗, let u ∈ W 1,2
0 (Ω)\{0}, and let the parameter λ∗0 be

given by the variational problem (4). Then the following assertions hold.
1. If λ ∈ (0, λ∗0), then Iλ(tu) treated as a function of t has exactly two critical points, a point of

minimum t1(u) and a point of maximum t2(u); moreover , t1(u) < t2(u).
2. If λ ≤ 0, then Iλ(tu) treated as a function of t has exactly one critical point , a point of

maximum t3(u).
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Below we need the following assertions.

Lemma 1. Let 1 < q < 2 < γ < 2∗, λ < λ∗0, and u ∈ Nλ. Then
1. Lλ(u) 6= 0;
2. Iλ(u) → +∞ as ‖u‖ → +∞; i.e., the functional Iλ is coercive on Nλ;
3. if Lλ(u) > 0, then ‖u‖ < δ1 < +∞, where δ1 is independent of u; in addition, ‖u‖ → 0 and

Lλ(u) → 0+ as λ → 0.

Proof. 1. Suppose that Lλ(u) = 0. Then, by virtue of the relation Qλ(u) = 0, we find that t = 1
is a point of inflection of the fibered functional Iλ(tu). However, by Proposition 1, if λ < λ∗0, then
Iλ(tu) treated as a function of t has no critical point of inflection type. Consequently, Lλ(u) 6= 0.

2. Now let us prove the coercivity of the functional Iλ on Nλ. By assumption, Qλ(u) = 0;
therefore, the functional Iλ on Nλ can be represented in the form

Iλ(u) =
γ − 2
2γ

H(u)− λ
γ − q

γq
G(u). (6)

If λ > 0, then, by the embedding theorem, we obtain the estimate

Iλ(u) >
γ − 2
2γ

H(u)− λ
γ − q

γq
CqH(u)q/2,

where Cq = Cq(q, γ,Ω) > 0 is a constant.
If λ ≤ 0, then we estimate the functional (6) as follows:

Iλ(u) ≥ γ − 2
2γ

H(u).

Then in both cases we have Iλ(u) → +∞ as H(u) = ‖u‖2 → +∞; i.e., the functional Iλ is coercive
on Nλ.

3. Now suppose that u ∈ Nλ and Lλ(u) > 0. We rewrite these conditions in the form of the
system

H(u)− λG(u)− F (u) = 0, H(u)− λ(q − 1)G(u)− (γ − 1)F (u) > 0.

By expressing F (u) from the equation and by substituting it into the inequality, we obtain

Lλ(u) = −(γ − 2)H(u) + λ(γ − q)G(u) > 0. (7)

Next, by using the Sobolev embedding theorem, we obtain the chain of inequalities

H(u) < λ
γ − q

γ − 2
G(u) < λCq

γ − q

γ − 2
H(u)q/2, Cq = Cq(q,Ω) > 0,

which implies that

‖u‖2 = H(u) <

(
λCq

γ − q

γ − 2

)2/(2−q)

= δ2
1(λ, q, γ,Ω) = δ2

1 . (8)

In addition, ‖u‖ < δ1 → 0 as λ → 0. Moreover, one can readily find from inequalities (7) and (8)
that Lλ(u) → 0+ as λ → 0. The proof of the lemma is complete.

Lemma 2. Let 1 < q < 2 < γ < 2∗ and λ < λ∗0. If u ∈ Nλ and Lλ(u) < 0, then the following
assertions hold.

1. Iλ(u) > 0, and t = 1 is a point of global maximum of Iλ(tu) treated as a function of t for t > 0.
2. ‖u‖ > δ2 > 0 and Lλ(u) < C < 0, where δ2 and C are independent of u and λ.
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Proof. 1. Note that λ < λ∗0 ≤ λ(u), where λ(u) is given by relation (5); therefore,

Iλ(u) =
1
2
H(u)− λ

q
G(u)− 1

γ
F (u) >

1
2
H(u)− λ(u)

q
G(u)− 1

γ
F (u) = 0;

i.e., Iλ(u) > 0. By Proposition 1, the point t = 1 is the unique point of local maximum of Iλ(tu)
treated as a function of t for t > 0, and Iλ(u) > 0. In this case, the relations

Iλ(tu) → 0 as t → 0, Iλ(tu) → −∞ as t → +∞
hold on the boundary of the domain (0, +∞). Consequently, t = 1 is a point of global maximum
of Iλ(tu) treated as a function of t.

2. We rewrite the conditions Qλ(u) = 0 and Lλ(u) < 0 in the form of the system

H(u)− λG(u)− F (u) = 0, H(u)− λ(q − 1)G(u)− (γ − 1)F (u) < 0.

We express λG(v) from the equation and substitute it into the inequality. Then, by virtue of the
Sobolev embedding theorem, we obtain the chain of inequalities

2− q

γ − q
H(u) < F (u) < CγH(u)γ/2, Cγ = Cγ(q, γ,Ω) > 0,

which implies that

H(u) >

(
2− q

(γ − q)Cγ

)2/(γ−2)

= δ2
2(q, γ,Ω) = δ2

2 > 0.

Therefore, ‖u‖ = H(u)1/2 > δ2 > 0.
Now let us show that Lλ(u) < C < 0, where C is independent of u and λ. By assumption,

Lλ(u) < 0, and it follows from the assertions proved above that Iλ(u) > 0. We rewrite these
inequalities in the form of the system

Iλ(u) = −2− q

2
H(u) +

γ − q

γ
F (u) > 0, Lλ(u) = (2− q)H(u)− (γ − q)F (u) < 0,

which implies that

Lλ(u) < −(2− q)(γ − 2)
2

H(u) < C(q, γ,Ω) = C < 0,

because ‖u‖ > δ2 > 0 as was shown above. The proof of the lemma is complete.
Note that if u ∈ W 1,2

0 (Ω), then u± ∈ W 1,2
0 (Ω) (see Corollary A.5 in [22, p. 54]), and for the

representation u = u+ + u−, we have the relations

Iλ(u) = Iλ(u+) + Iλ(u−), Qλ(u) = Qλ(u+) + Qλ(u−), Lλ(u) = Lλ(u+) + Lλ(u−).

Remark 1. The assertions of Lemmas 1 and 2 remain valid for u+ and u− if u ∈ N 1
λ .

2. EXISTENCE OF NODAL SOLUTIONS

First, we show that if λ < λ∗0, then the set N 1
λ is nonempty. Take an arbitrary subdomain

Ω1 ⊂ Ω and a function u1 ∈ W 1,2
0 (Ω)\{0} such that suppu1 ⊆ Ω1. Then, by Proposition 1, there

exists a t2(u1) > 0 such that Qλ(t2(u1)u1) = 0 and Lλ(t2(u1)u1) < 0. Now take some subdomain
Ω2 ⊂ Ω such that Ω1 ∩ Ω2 = ∅ and a function u2 ∈ W 1,2

0 (Ω)\{0} such that suppu2 ⊆ Ω2. Then
there exists a t2(u2) > 0 such that Qλ(t2(u2)u2) = 0 and Lλ(t2(u2)u2) < 0. Set v+ = t2(u1)u1,
v− = −t2(u2)u2, and v = v+ + v−. Then Qλ(v) = Qλ(v+) + Qλ(v−) = 0.

We have thereby found a function v ∈ W 1,2
0 (Ω)\{0} that belongs to the set v ∈ N 1

λ ; i.e., N 1
λ 6= ∅.
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Next, consider the constrained minimization problem

Iλ(u) → min, u ∈ N 1
λ . (9)

Let cλ = inf{Iλ(v) : v ∈ N 1
λ}, and let un ∈ N 1

λ be a minimizing sequence; i.e., Iλ(un) → cλ.
Note that cλ ≥ 0 by Lemma 2. Then it follows from the coercivity of Iλ on Nλ (see Lemma 1)
that the sequence un is bounded in W 1,2

0 (Ω). Since the space W 1,2
0 (Ω) is reflexive, it follows from

the Eberlein–Smulian theorem [23, p. 466 of the Russian translation] that there exist functions
u, v, w ∈ W 1,2

0 (Ω) such that

un ⇀ u, (un)+ ⇀ v, (un)− ⇀ w weakly in W 1,2
0 (Ω).

Moreover, retaining the preceding numbering in n, from the Sobolev embedding theorem, we obtain

un → u, (un)+ → v, (un)− → w in Lγ(Ω) and Lq(Ω), (10)

because q < γ < 2∗.
Let us introduce the mapping h : Lr → Lr by the rule h(u) = u+. It follows from Lemma A.1

(see below) that if r = q and r = γ, then h is continuous; therefore, by relations (10), u+ = v ≥ 0
and u− = w ≤ 0. Let us show that u changes sign; i.e., u+ > 0 and u− < 0. Since un ∈ N 1

λ ,
it follows from assertion 2 of Lemma 2 that

λ

∫

Ω

(u)q
+ dx +

∫

Ω

(u)γ
+ dx = lim

n→∞

(
λ

∫

Ω

(un)q
+ dx +

∫

Ω

(un)γ
+ dx

)
= lim

n→∞
‖(un)+‖2 > δ2

2 > 0.

Consequently, u+ > 0. In a similar way, one can show that u− < 0.
Now let us show that (un)± → u± in W 1,2

0 (Ω). It follows from the weak convergence (un)± ⇀ u±
in W 1,2

0 (Ω) that ‖u±‖2 ≤ lim infn→∞ ‖(un)±‖2. Let us show that the equality takes place. Suppose
the contrary: ‖u±‖2 < lim infn→∞ ‖(un)±‖2. Then

‖u±‖2 − λG(u±)− F (u±) < lim inf
n→∞

(‖(un)±‖2 − λG((un)±)− F ((un)±)) = 0.

Let λ ∈ (−∞, λ∗0). By Proposition 1, there exists an α = t2(u+) > 0 and a β = t2(u−) > 0 such
that

Qλ(αu+) = 0, Qλ(βu−) = 0, Lλ(αu+) < 0, Lλ(βu−) < 0.

It follows that we have Qλ(αu+ + βu−) = 0. Then, by assumption,

Iλ(αu+ + βu−) < lim inf
n→∞

(Iλ(α(un)+ + β(un)−)) = lim inf
n→∞

(Iλ(α(un)+) + Iλ(β(un)−)). (11)

In turn, since un ∈ N 1
λ , it follows from Remark 1 that t = 1 is a point of global maximum of the

functions Iλ(tu+) and Iλ(tu−) with respect to t. Consequently,

lim inf
n→∞

(Iλ(α(un)+) + Iλ(β(un)−)) ≤ lim inf
n→∞

(Iλ((un)+) + Iλ((un)−)). (12)

At the same time, we have

lim inf
n→∞

(Iλ((un)+) + Iλ((un)−)) = lim inf
n→∞

Iλ(un) = inf
N 1

λ

Iλ = cλ. (13)

Therefore, it follows from relations (11)–(13) that Iλ(αu+ + βu−) < cλ, which contradicts the
assumptions. Consequently, (un)+ → u+, (un)− → u− in W , and α = β = 1.

Therefore, u ∈ N 1
λ and Iλ(u) = inf{Iλ(v) : v ∈ N 1

λ}.
Now let us show that the u thus found is a critical point of the functional Iλ and hence a solution

of problem (1).
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Lemma 3. Let 1 < q < 2 < γ < 2∗ and λ < λ∗0. If u ∈ N 1
λ is a solution of the minimization

problem (9), then it is a critical point of Iλ on W 1,2
0 (Ω); i.e.,

DuIλ(u)(φ) = 0, φ ∈ W 1,2
0 (Ω)\{0}.

Proof. Let u ∈ N 1
λ be a solution of the minimization problem (9); i.e., Iλ(u) = cλ = inf{Iλ(v) :

v ∈ N 1
λ}. Suppose the contrary: DuIλ(u) 6= 0.

Since λ < λ∗0, it follows from Lemma 2 that t = 1 is a point of global maximum of Iλ(tu) treated
as a function of t. Moreover, by Remark 1, t = 1 is also a point of global maximum of Iλ(tu+) and
Iλ(tu−) treated as functions of t. Consequently,

Iλ(su+ + tu−) = Iλ(su+) + Iλ(tu−) < Iλ(u+) + Iλ(u−) = Iλ(u+ + u−) = Iλ(u) (14)

for all (s, t) ∈ R2
+\{1, 1}.

Since, by assumption, DuIλ(u) 6= 0, it follows from the continuity of the functional DuIλ that
there exist α, δ > 0 such that ‖DuIλ(v)‖ ≥ α for v ∈ U3δ(u) = {w ∈ W 1,2

0 (Ω) : ‖u− w‖ < 3δ}.
Let us introduce the function

g : A =
(

1− t1(u+)
2

,
1 + t1(u+)

2

)(
1− t1(u−)

2
,
1 + t1(u−)

2

)
→ W 1,2

0 (Ω),

g(s, t) = su+ + tu−.

It follows from Proposition 1 and the condition λ < λ∗0 that t1(u+), t1(u−) < 1, consequently,
A 6= ∅. Moreover, from inequality (14), we obtain the estimate

β0 := max
(s,t)∈∂A

Iλ(g(s, t)) < cλ.

Set ε := min{(cλ − β0)/2, αδ/8} and S = Uδ(u). Then it follows from the deformation lemma
(see Theorem A.1 in Appendix A) that there exists a homotopy η ∈ C([0, 1] ×W 1,2

0 (Ω),W 1,2
0 (Ω))

such that the following relations hold for η1 := η(1, ·).
1. η1(v) = v if Iλ(v) ≤ cλ − 2ε.
2. η1({v ∈ S : Iλ(v) ≤ cλ + ε}) ⊂ {v ∈ W 1,2

0 (Ω) : Iλ(v) ≤ cλ − ε}.
3. Iλ(η1(v)) ≤ Iλ(v) for all v ∈ W 1,2

0 (Ω).
It follows from the inclusion 2 that

max
{(s,t)∈A: g(s,t)∈S}

Iλ(η1(g(s, t))) < cλ. (15)

On the other hand, from the inequalities 3 and (14), we obtain

max
{(s,t)∈A: g(s,t)/∈S}

Iλ(η1(g(s, t))) ≤ max
{(s,t)∈A: g(s,t)/∈S}

Iλ(g(s, t)) < cλ. (16)

For convenience, set
f(s, t) := η1(g(s, t)).

Then it follows from relation 1 that f(s, t) = g(s, t) for (s, t) ∈ ∂A by virtue of the choice of ε.
Consider the mapping

ψ : A → R2, ψ(s, t) := (Qλ(f(s, t)+), Qλ(f(s, t)−)).

Note that ψ(s, t) = (0, 0) if and only if f(s, t)+, f(s, t)− ∈ Nλ.
Since f = g for (s, t) ∈ ∂A, we have

ψ(s, t) = (Qλ(su+), Qλ(tu−)), (s, t) ∈ ∂A;

DIFFERENTIAL EQUATIONS Vol. 50 No. 6 2014
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in addition,

Qλ

(
1− t1(u+)

2
u+

)
> 0, Qλ

(
1 + t1(u+)

2
u+

)
< 0, (17)

Qλ

(
1− t1(u−)

2
u−

)
> 0, Qλ

(
1 + t1(u−)

2
u−

)
< 0. (18)

Then, by Theorem A.2 in Appendix A, there exists a point (s0, t0) ∈ A such that ψ(s0, t0) = (0, 0);
consequently, f(s0, t0)+, f(s0, t0)− ∈ Nλ. Moreover, it follows from inequalities (17) and (18) and
Proposition 1 that Lλ(f(s0, t0)+) < 0 and Lλ(f(s0, t0)−) < 0, because there exists a unique point
of the maximum of the functions Iλ(zf(s0, t0)+) and Iλ(zf(s0, t0)−) with respect to z for z > 0.

Therefore, f(s0, t0) ∈ N 1
λ ; i.e., f(s0, t0) is an admissible function in the minimization problem (9).

In addition, it follows from inequalities (15) and (16) that

Iλ(f(s0, t0)) < cλ = inf{Iλ(v) : v ∈ N 1
λ};

i.e., we have arrived at a contradiction. Consequently, DuIλ(u) = 0; i.e., u is a critical point of Iλ

on W 1,2
0 (Ω). The proof of the lemma is complete.

Therefore, the desired u ∈ N 1
λ is a ground state of problem (1) with respect to N 1

λ .

3. EXISTENCE OF A BRANCH OF SOLUTIONS

Let uλ ∈ N 1
λ be a solution of the minimization problem (9). Set

cλ := Iλ(uλ), c+
λ := Iλ((uλ)+), c−λ := Iλ((uλ)−).

One can readily show that, for each λ and each sequence {λi} → λ, the corresponding sequence
{uλi

} is a Paley–Smale sequence; i.e.,

Iλ(uλi
) → c, DuIλ(uλi

) → 0,

where c > 0. Then, by Proposition 8.1 in [6], there exists a u0
λ ∈ N 1

λ such that uλ → u0
λ strongly

in W 1,2
0 (Ω). In addition, obviously, u0

λ is a critical point of the functional Iλ.
Now let us show that u0

λ is also a solution of the minimization problem (9). Suppose the contrary:
cλ < Iλ(u0

λ); in this case, we have δ+ + δ− > 0, where

δ+ := Iλ((u0
λ)+)− c+

λ , δ− := Iλ((u0
λ)−)− c−λ .

First, we show that the point of maximum tλ+∆λ
2,+ = tλ+∆λ

2 ((uλ)+) of the fibered functional
Iλ+∆λ(u+) tends to unity as ∆λ → 0. To this end, consider the function r(t, ∆λ) ∈ C1(R+ × R)
given by the relation

r(t, ∆λ) := Qλ+∆λ(t(uλ)+), (t,∆λ) ∈ R+ × R.

Note that r(1, 0) = 0, because uλ ∈ N 1
λ . In addition, Lλ((uλ)+) < C1 < 0 by virtue of assertion 2

of Lemma 2; therefore, there exists a neighborhood of the point (1, 0) in which

∂

∂t
r(t, ∆λ) =

∂

∂t
Qλ+∆λ(t(uλ)+) = Lλ+∆λ(t(uλ)+) + Qλ+∆λ(t(uλ)+) < 0;

i.e., the function r(t,∆λ) is strictly monotone in t in the above-mentioned neighborhood. Then,
by the implicit function theorem, there exist open domains U and V with (1, 0) ∈ U × V and
a continuous function s : U → V satisfying the condition s(0) = 1; and the relation r(t,∆λ) = 0
is equivalent to the relation t = s(∆λ), (t, ∆λ) ∈ U × V . Since

r(tλ+∆λ
2,+ , ∆λ) = Qλ+∆λ(tλ+∆λ

2,+ (uλ)+) = 0,

we have tλ+∆λ
2,+ = s(∆λ) → 1 as ∆λ → 0.
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By using this fact and the strong convergence uλi
→ u0

λ, one can readily show that, for each
ε > 0, there exists a number δ > 0 such that the inequalities

|Iλ+∆λ(tλ+∆λ
2,+ (uλ)+)− Iλ((uλ)+)| < ε, |Iλ((u0

λ)+)− Iλ+∆λ((uλ+∆λ)+)| < ε

hold for all |∆λ| < δ. From these estimates, we obtain

Iλ+∆λ(tλ+∆λ
2,+ (uλ)+) < Iλ+∆λ((uλ+∆λ)+) + 2ε− δ+. (19)

By proceeding in a similar way for (uλ)−, we obtain

Iλ+∆λ(tλ+∆λ
2,− (uλ)−) < Iλ+∆λ((uλ+∆λ)−) + 2ε− δ−. (20)

From inequalities (19) and (20) and the assumption δ+ + δ− > 0, we find that the function vλ =
tλ+∆λ
2,+ (uλ)+ + tλ+∆λ

2,− (uλ)− satisfies the inequality

Iλ+∆λ(vλ) < Iλ+∆λ(uλ+∆λ)

for sufficiently small ε > 0. By construction, vλ ∈ N 1
λ ; consequently, we have obtained a contradic-

tion, because uλ+∆λ minimizes Iλ+∆λ on N 1
λ .

Therefore, the ground states uλ of problem (1) with respect to N 1
λ form a continuous branch

along the level lines of Iλ on the interval (−∞, λ∗0).

4. EXISTENCE OF EXACTLY TWO NODAL DOMAINS

Along with N 1
λ , consider another set of nodal functions,

N 2
λ = {v ∈ Nλ : v+ ∈ Nλ, v− ∈ Nλ, Lλ(v+) > 0, Lλ(v−) < 0, Lλ(v) > 0}.

Lemma 4. Let 1 < q < 2 < γ < 2∗. Then there exists a λ̃ > 0 such that N 2
λ = ∅ for all λ < λ̃.

Proof. Let λ ≤ 0. Since, by Proposition 1, Iλ(tu) treated as a function of t has only one critical
point, which is a point of maximum, we have Lλ(u) < 0 for any function u ∈ Nλ. Consequently,
N 2

λ = ∅.
Let λ > 0. Suppose the contrary: there exists a sequence λn → 0 as n →∞ and the correspond-

ing sequence (wλn
) ∈ N 2

λn
. Then Lλn

(wλn
) → 0+ and Lλn

((wλn
)+) → 0+ as n →∞ by assertion 3

of Lemma 1. At the same time, it follows from assertion 2 of Lemma 2 that Lλn
((wλn

)−) < C1 < 0.
Therefore, there exists an N > 0 such that the inequality

Lλn
(wλn

) = Lλn
((wλn

)+) + Lλn
((wλn

)−) ≤ 0

holds for all n > N ; in addition, (wλn
)+ 6= 0 and (wλn

)− 6= 0. Then wλn
/∈ N 2

λn
, which contradicts

the assumption that wλn
∈ N 2

λn
. The proof of the lemma is complete.

Let us present some definitions in [16]. A strong partition of the set Ω is defined as a family
D :=

⋃k

i=1 Di of pairwise disjoint sets Di such that
⋃k

i=1 Di ⊂ Ω and Int(
⋃k

i=1 Di)\∂Ω = Ω. If the
Di are open connected sets, then the partition is said to be open and connected. Sets Di and Dj

are neighboring if the set Int(Di ∪Dj)\∂Ω is connected.
To each partition D we assign the graph G(D) whose vertices correspond to the sets Di and

whose edges are the pairs (Di, Dj) of neighbors. The graph G(D) is an undirected graph without
multiple edges and loops. The graph is bipartite if it can be colored into two colors.

Let u ∈ W 1,2
0 (Ω) be a weak solution of problem (1). It is well known (see [24, Th. 1.16, p. 11])

that u ∈ C2(Ω)∩C1(Ω) in this case. The family D(u) :=
⋃k

i=1 Di(u) of nodal domains of a solution
u is referred to as a nodal partition of the solution u.

The following assertion was proved in [16].
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Proposition 2. A nodal partition D(u) of a weak solution u ∈ C2(Ω) ∩ C1(Ω) of problem (1)
is strong , open, and connected , and the corresponding graph G(D(u)) is bipartite.

The following assertion is the main result of this section.

Lemma 5. Let 1 < q < 2 < γ < 2∗ and λ < min{λ̃, λ∗0}, where λ̃ is defined in Lemma 4.
If u ∈ N 1

λ is a weak nodal solution of problem (1) that is a solution of the minimization problem (9),
then it has exactly two nodal domains.

Proof. As was mentioned above, u ∈ C2(Ω)∩C1(Ω). Suppose the contrary: the nodal partition
D(u) contains more than two connected components. Without loss of generality, we assume that
the function u has three nodal domains D1, D2, and D3; moreover, u > 0 in the domains D1

and D2. Set

ui(x) =
{

u(x) for x ∈ Di,
0 for x ∈ Ω\Di, i = 1, 2, 3.

Without loss of generality, we also assume that Lλ(u2) < 0. Let us introduce the function

v = −2u1 + u = −u1 + u2 + u3.

In this case, we have v+ = u2, v− = −u1 + u3, and

Qλ(v+) = Qλ(u2) = 0, Qλ(v−) = Qλ(u1) + Qλ(u3) = 0,

Lλ(v+) = Lλ(u2) < 0, Lλ(v−) = Lλ(u1) + Lλ(u3).

Suppose that Lλ(u1) > 0 and

Lλ(u+) = Lλ(u1) + Lλ(u2) < 0, Lλ(v−) = Lλ(u1) + Lλ(u3) > 0.

Then v ∈ N 2
λ , which is impossible, because N 2

λ = ∅ for λ < min{λ̃, λ∗0} by Lemma 4.
Consequently, either Lλ(u1) > 0 and

Lλ(u+) = Lλ(u1) + Lλ(u2) < 0, Lλ(v−) = Lλ(u1) + Lλ(u3) < 0,

or Lλ(u1) < 0.
We have Iλ(v) = Iλ(u) = inf{Iλ(w) : w ∈ N 1

λ} in both cases. Then from Lemma 3, we find
that v ∈ N 1

λ is a solution of problem (1). It follows from Proposition 2 that the graph G(D(v))
of the nodal partition D(v) of the solution v is bipartite, but this is impossible, because the graph
G(D(u)) of the nodal partition D(u) of the solution u is bipartite as well. Consequently, u contains
exactly two connected components. The proof of the lemma is complete.

APPENDIX A

Define a mapping h : Lr → Lr, r ≥ 1, by the relation h(u) = max{u, 0}.

Lemma A.1. The mapping h is continuous.

Proof. Let u ∈ Lr(Ω). Then, obviously, u+ ∈ Lr(Ω) and u− ∈ Lr(Ω). Note that, almost
everywhere in Ω, the mapping h can be represented in the form h(u) = j(u)u, where j(u) = 1 if
u ≥ 0 and j(u) = 0 if u < 0. Let un → u in Lr(Ω). Therefore, there exists a subsequence unk

such that unk
→ u almost everywhere in Ω. Without loss of generality, for brevity, we retain the

previous numbering with respect to n without passage to a subsequence. Then

‖h(un)− h(u)‖r
r =

∫

Ω

|h(un)− h(u)|r dx =
∫

Ω

|j(un)(un − u) + (j(un)− j(u))u|r dx.
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Note that since ϕ(s) = sr is a convex function for r ≥ 1 and s ≥ 0, it follows from the Jensen
inequality (s1 + s2)r ≤ 2r−1(sr

1 + sr
2) that

‖h(un)− h(u)‖r
r ≤ 2r−1

(∫

Ω

|(un − u)|r dx +
∫

Ω

|(j(un)− j(u))u|r dx

)
.

The first integral converges to zero, because un → u in Lr(Ω). On the other hand, the relation
j(un) → j(u) = 0 or j(un) → j(u) = 1 holds for almost all x ∈ Ω. Hence it follows that

∫

Ω

|(j(un)− j(u))u|r dx ≤ sup
x∈Ω

(j(un)− j(u))
∫

Ω

|u|r dx → 0

by virtue of the inclusion u ∈ Lr(Ω). Therefore, ‖h(un)−h(u)‖r → 0. Consequently, h ∈ C(Lr; Lr).
The proof of the lemma is complete.

The following assertion can be proved in a similar way.

Corollary A.1. The inclusion h ∈ C(W 1,2
0 (Ω);W 1,2

0 (Ω)) holds.

The following assertion is a version of the deformation lemma.

Theorem A.1. Let X be a Banach space, and let I ∈ C1(X,R), S ⊂ X, c ∈ R, ε > 0, and
δ > 0 satisfy the relation

‖DuI(u)‖X∗ ≥ 8ε

δ
, u ∈ I−1([c− 2ε, c + ε]) ∩ S2δ,

where S2δ = {v ∈ X : dist(v, S) ≤ 2δ}. Then there exists a homotopy η ∈ C([0, 1] × X, X) such
that

if either t = 0 or u /∈ I−1([c− 2ε, c + ε]) ∩ S2δ, then η(t, u) = u;
η(1, {v ∈ S : I(v) ≤ c + ε}) ⊂ {v ∈ W : I ≤ c− ε};
the function η(1, ·) defines a homeomorphism X → X for all t ∈ [0, 1];
‖η(t, u)− u‖X ≤ δ for arbitrary u ∈ X and t ∈ [0, 1];
I(η(·, u)) is nonincreasing for any u ∈ X;
I(η(t, u)) < c for all u ∈ I−1((−∞, c]) ∩ Sδ, t ∈ [0, 1].

Proof. The proof of this assertion can be found in [25, Lemma 2.3, p. 38].
The following assertion is a two-dimensional version of the Miranda theorem (e.g., see [26]).

Theorem A.2. Let A = {x ∈ R2 : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2}, let ψ = (ψ1, ψ2) : A → R2 be
a continuous mapping , and let

ψ1(a1, x2) ≥ 0 ≥ ψ1(b1, x2), x2 ∈ (a2, b2),
ψ2(x1, a2) ≥ 0 ≥ ψ2(x1, b2), x1 ∈ (a1, b1).

Then there exists a point (x0
1, x

0
2) ∈ A such that ψ(x0

1, x
0
2) = (0, 0).

Proof. The proof of this assertion can be found in [26].
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