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Consider the sequence {𝜆𝑛(Ω)} of eigenvalues of the Dirichelet 𝑝-Laplacian in a bounded
domain Ω ⊂ R𝑁 obtained via the Lusternik–Schnirelmann min-max approach. Let 𝜙𝑛 be
an eigenfunction associated to 𝜆𝑛(Ω). We are interested in the estimates for the number of
nodal domains of 𝜙𝑛 which we denote as 𝜇(𝜙𝑛).

In the linear case 𝑝 = 2, the well-known Courant nodal domain theorem says that 𝜇(𝜙𝑛) ≤
𝑛 for all 𝑛 ≥ 1. Its generalization to the nonlinear case 𝑝 ̸= 2 obtained in [1] asserts that

𝜇(𝜙𝑛) ≤ 2𝑛− 2 for all 𝑛 ≥ 2,

which implies

lim sup
𝑛→∞

𝜇(𝜙𝑛)

𝑛
≤ 2.

On the other hand, in the linear case 𝑝 = 2, there is a result of Pleijel [2] on the following
asymptotic refinement of the Courant nodal domain theorem:

lim sup
𝑛→∞

𝜇(𝜙𝑛)

𝑛
≤ 4

𝑗20,1
= 0.69166 . . . , (1)

see, e.g., this post for a discussion.

The aim of the present post is to generalize the result of Pleijel to the 𝑝-Laplacian settings.
Pleijel’s approach is purely variational and consists of two main ingredients: the Faber-Krahn
inequality and the Weyl law.

1. The Faber-Krahn inequality is easily available for the 𝑝-Laplacian, and it can be for-
mulated as

|Ω|
𝑝
𝑁 𝜆1(Ω) ≥ |𝐵1|

𝑝
𝑁 𝜆1(𝐵1),

where 𝐵1 is a unit ball in R𝑁 ; see, e.g., the discussion here. Therefore, noting that 𝜆𝑛(Ω) =
𝜆1(Ω𝑖) for any 𝑖 = 1..𝜇(𝜙𝑛) where Ω𝑖 is a nodal domain of 𝜙𝑛, we get

|Ω|𝜆𝑛(Ω)
𝑁
𝑝 ≥ 𝜇(𝜙𝑛)|𝐵1|𝜆1(𝐵1)

𝑁
𝑝 .

Equivalently,

𝜇(𝜙𝑛) ≤ |Ω|𝜆𝑛(Ω)
𝑁
𝑝

|𝐵1|𝜆1(𝐵1)
𝑁
𝑝

. (2)

2. The Weyl law is used to estimate 𝜆𝑛(Ω) in (2) in terms of 𝑛. Unfortunately, this law
is not available for the 𝑝-Laplacian in the required form; see the discussion in [3] and [4].
Instead, we will obtain the simplest explicit Weyl-type upper bound for 𝜆𝑛(Ω), and this will
be enough to get a Pleijel’s type result. Let 𝑄ℎ stands for the 𝑁 -dimensional cube with the
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side length ℎ. First, if ℎ → 0, then the number 𝑚 of cubes 𝑄ℎ disjointly inscribed in Ω is
given by

𝑚 ≈ |Ω|
ℎ𝑁

.

Second, by the variational characterization of 𝜆𝑛(Ω), we can estimate

𝜆𝑛(Ω) ≤ 𝜆1(𝑄ℎ𝑛),

where ℎ𝑛 is such that there are 𝑛 disjoint cubes 𝑄ℎ𝑛 inscribed in Ω. We can assume that ℎ𝑛

is maximal.

Third, we know that
𝜆1(𝑄ℎ) = 𝜆1(𝑄1)ℎ

−𝑝.

Combining the previous three facts, we get

𝜆𝑛(Ω) ≤ 𝜆1(𝑄ℎ𝑛) = 𝜆1(𝑄1)ℎ
−𝑝
𝑛 = 𝜆1(𝑄1)

(︂
𝑛

|Ω|

)︂ 𝑝
𝑁

as 𝑛 → ∞. (3)

Finally, mixing (2) and (3), we deduce that

lim sup
𝑛→∞

𝜇(𝜙𝑛)

𝑛
≤ 1

|𝐵1|

(︂
𝜆1(𝑄1)

𝜆1(𝐵1)

)︂𝑁
𝑝

. (4)

Notice that this upper bound does not depend on Ω. Below, we will discuss a possible
way how to improve this bound.

All we need now is to get a “good” upper bound for 𝜆1(𝑄1) and a “good” lower bound for
𝜆1(𝐵1).

Let us start with an upper bound for 𝜆1(𝑄1). From Proposition 2.7 of [5] we know that

𝜆1(𝑄1) ≤ ̃︀𝜋𝑝
𝑝𝑁 for 𝑝 < 2

and
𝜆1(𝑄1) ≤ ̃︀𝜋𝑝

𝑝𝑁
𝑝
2 for 𝑝 > 2,

where ̃︀𝜋𝑝 = (𝑝− 1)
1
𝑝

2𝜋

𝑝 sin(𝜋/𝑝)
≡ 2(𝑝− 1)

1
𝑝

∫︁ 1

0

𝑑𝑠

(1 − 𝑠𝑝)
1
𝑝

.

As lower estimates for 𝜆1(𝐵1), we use the estimate

𝜆1(𝐵1) ≥ 𝑁

(︂
𝑝

𝑝− 1

)︂𝑝−1

for 𝑝 < 2,

see [6] or [7]; and
𝜆1(𝐵1) ≥ 𝑁𝑝 for 𝑝 > 2,

see [8] and, in general, this post for a discussion of lower bounds.

Thus, substituting all these things into (4), we get

lim sup
𝑛→∞

𝜇(𝜙𝑛)

𝑛
≤

Γ
(︀
𝑁
2

+ 1
)︀
𝜋

𝑁
2 2𝑁(𝑝− 1)𝑁

𝑝
(2𝑝−1)𝑁

𝑝 sin(𝜋/𝑝)𝑁
for 𝑝 < 2 (5)
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and

lim sup
𝑛→∞

𝜇(𝜙𝑛)

𝑛
≤

Γ
(︀
𝑁
2

+ 1
)︀
𝜋

𝑁
2 2𝑁𝑁

(𝑝−2)𝑁
2𝑝 (𝑝− 1)

𝑁
𝑝

𝑝
(𝑝+1)𝑁

𝑝 sin(𝜋/𝑝)𝑁
for 𝑝 > 2. (6)

The corresponding plot is depicted below by the increasing line. We see that these upper
bounds does not give us a Pleijel constant smaller than 1 even in the dimension 𝑁 = 2,
which is quite sad. Note that if 𝑝 → 1, then the bound (5) approaches 4

𝜋
= 1.2732 . . . , while

if 𝑝 → ∞, then the bound (6) approaches 8
𝜋

= 2.5464 . . . , see the blue line on figure below.

Figure 1. 𝑁 = 2

Let us now discuss a possible improvement of (4) which concerns an improvement of the
Weyl-type upper bound. For simplicity, let us fix 𝑁 = 2. First, we can inscribe in Ω not a
square tiling, but a hexagonal tiling. If 𝐻𝑟 stands for a hexagon with the inradius 𝑟, and if
𝑟 → 0, then the number 𝑚 of 𝐻𝑟’s disjointly inscribed in Ω is given by

𝑚 ≈ |Ω|
2
√

3𝑟2
.

Therefore, analogously to (3) we get

𝜆𝑛(Ω) ≤ 𝜆1(𝐻𝑟𝑛) = 𝜆1(𝐻1)𝑟
−𝑝
𝑛 = 𝜆1(𝐻1)

(︃
2
√

3𝑛

|Ω|

)︃ 𝑝
2

as 𝑛 → ∞,

and hence, from (2),

lim sup
𝑛→∞

𝜇(𝜙𝑛)

𝑛
≤ 2

√
3

|𝐵1|

(︂
𝜆1(𝐻1)

𝜆1(𝐵1)

)︂ 2
𝑝

. (7)

Noting that 𝐵1 ⊂ 𝐻1, we get 𝜆1(𝐻1) ≤ 𝜆1(𝐵1), which yields

lim sup
𝑛→∞

𝜇(𝜙𝑛)

𝑛
≤ 2

√
3

𝜋
= 1.1026 . . .
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Moreover, if 𝑝 → ∞, then, by the known result from [9], 𝜆1(𝐻1)
1
𝑝 → 1 and 𝜆1(𝐵1)

1
𝑝 → 1,

i.e., this upper estimate of the upper estimate (7) is sharp for 𝑝 → ∞. See the green line on
the figure above.

Thus, unfortunately, even if 𝑛 → ∞, we cannot show that 𝜇(𝜙𝑛) ≤ 𝑛 for all 𝑝 > 1
without getting a substantial improvement of the Weyl-type upper bound for 𝜆𝑛(Ω). Such
an improvement is clearly a prominent problem which needs to be studied much closer.
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