PLEIJEL’S TYPE ESTIMATE FOR THE p-LAPLACIAN

VLADIMIR BOBKOV

Consider the sequence {\,(€2)} of eigenvalues of the Dirichelet p-Laplacian in a bounded
domain Q C R¥ obtained via the Lusternik—Schnirelmann min-max approach. Let ¢, be
an eigenfunction associated to A, (§2). We are interested in the estimates for the number of
nodal domains of ¢,, which we denote as p(p,).

In the linear case p = 2, the well-known Courant nodal domain theorem says that p(p,) <
n for all n > 1. Its generalization to the nonlinear case p # 2 obtained in [I] asserts that

wlpn) <2n—2 foralln>2,
which implies

lim sup plen)

n—00 n

<2

On the other hand, in the linear case p = 2, there is a result of Pleijel [2] on the following
asymptotic refinement of the Courant nodal domain theorem:

lim sup M <

72
n—00 n J0,1

= 0.69166.. .., (1)

see, e.g., this post for a discussion.

The aim of the present post is to generalize the result of Pleijel to the p-Laplacian settings.
Pleijel’s approach is purely variational and consists of two main ingredients: the Faber-Krahn
inequality and the Weyl law.

1. The Faber-Krahn inequality is easily available for the p-Laplacian, and it can be for-
mulated as
Q¥ A(Q) > | BN A (B),
where B is a unit ball in RY; see, e.g., the discussion here. Therefore, noting that \,(Q2) =
A1(€;) for any i = 1..u(p,) where Q; is a nodal domain of ¢,,, we get
N

N
Equivalently,

N
P

= N *
| Bi|A1(B1) »
2. The Weyl law is used to estimate \,(Q2) in in terms of n. Unfortunately, this law

is not available for the p-Laplacian in the required form; see the discussion in [3] and [4].

Instead, we will obtain the simplest explicit Weyl-type upper bound for A, (€2), and this will
be enough to get a Pleijel’s type result. Let @), stands for the N-dimensional cube with the

1(en) (2)
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side length h. First, if h — 0, then the number m of cubes @), disjointly inscribed in € is
given by
19|
hV’
Second, by the variational characterization of A, (2), we can estimate
)\n<Q) S /\1 (th)7

where h,, is such that there are n disjoint cubes @)y, inscribed in 2. We can assume that h,
is maximal.

Third, we know that

m =

AM(Qn) = M (@)

Combining the previous three facts, we get

n \ N
An(€2) < A (Qny) = M(Q1)h,” = M(Qn) (‘—|> as n — 0o. (3)
Finally, mixing (2) and (8), we deduce that
N
: plen) _ 1 </\1(Q1)> B
lim su < 4

Notice that this upper bound does not depend on 2. Below, we will discuss a possible
way how to improve this bound.

All we need now is to get a “good” upper bound for A\;(Q;) and a “good” lower bound for
A1 (By).

Let us start with an upper bound for \;(Q1). From Proposition 2.7 of [5] we know that
AM(Q1) <7IN for p<2

and
AM(Q1) <TENE for p>2,
where .
1 2T 1 ds
m=p-1))—=2(p—1 p/ _—
= O ) =T e

As lower estimates for A;(Bj), we use the estimate

P\
A1<Bl) >N (—1) for p < 2,
p —

see [6] or [7]; and
Ai(B1) > Np for p>2,
see [8] and, in general, this post| for a discussion of lower bounds.
Thus, substituting all these things into (4), we get
N
lim sup f(#n) < a (%(;Z_{?NW 22— D7 for p<2 (5)
neo T p 7 sin(w/p)¥
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and
(p=2)N N
D T(E+1) 228N "= (p—1)»
lim sup ﬂ(;': ) < (3 >(p+1)N : =1 for p>2. (6)
n—00 p 7 sin(n/p)N

The corresponding plot is depicted below by the increasing line. We see that these upper
bounds does not give us a Pleijel constant smaller than 1 even in the dimension N = 2,
which is quite sad. Note that if p — 1, then the bound approaches % = 1.2732..., while

if p — o0, then the bound @ approaches % = 2.5464 ..., see the blue line on figure below.

FIGURE 1. N =2

Let us now discuss a possible improvement of which concerns an improvement of the
Weyl-type upper bound. For simplicity, let us fix N = 2. First, we can inscribe in {2 not a
square tiling, but a hexagonal tiling. If H, stands for a hexagon with the inradius r, and if
r — 0, then the number m of H,’s disjointly inscribed in €2 is given by

o
2/3r2

~
~

Therefore, analogously to we get

An(§2) < M(Hy,) = A (Hi)r,” = Ai(H) (%) as n — oo,

and hence, from ,

. w(en)  2v/3 ()\1(]1’1))Z
lims < .
ey T =B \ (B

Noting that By C Hy, we get A1(H;) < A1(By), which yields
plpn) _ 2V/3

lim sup < —=1.1026...

n—o00 n s
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Moreover, if p — oo, then, by the known result from [9], /\1(H1)% — 1 and /\1(31)% — 1,
i.e., this upper estimate of the upper estimate is sharp for p — oo. See the green line on
the figure above.

Thus, unfortunately, even if n — oo, we cannot show that p(y,) < n for all p > 1
without getting a substantial improvement of the Weyl-type upper bound for \,(€2). Such
an improvement is clearly a prominent problem which needs to be studied much closer.
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