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Consider the eigenvalue problem {
−∆u = λu in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R2 is a bounded domain. Denote by {λi} the sequence of the corresponding eigenvalues,

0 < λ1 < λ2 ≤ · · · ≤ λn →∞ as n→∞,

and let ϕn be an eigenfunction associated with λn. Let µ(ϕn) be a number of nodal domains of ϕn.
Courant’s theorem asserts that µ(ϕn) ≤ n for any n. This result was refined by Å. Pleijel as follows.

Theorem 1 ([8, Section 5]). Let j0,1 be the first zero of the Bessel function J0. Then

Pl(Ω) := lim sup
n→∞

µ(ϕn)

n
≤ 4

j20,1
= 0.69166 . . .

The upper bound 4
j20,1

is not sharp, as it was proved, e.g., by Bougain [2]. Moreover, it was conjectured

by Polterovich [9] that

Pl(Ω) ≤ 2

π
= 0.63661 . . .

In fact, this conjectured upper bound is achieved for rectangles Ω = (0, a)×(0, b) such that a2

b2 is irrational;
see, e.g., [6]. However, it seems that, apart such rectangles, the Pleijel constant Pl(Ω) have not been
found explicitly for any other domain Ω. At least, the question of finding such domains was explicitly
posed by Bonnaillie-Noël et al in [1, Section 6.1].

The aim of the present note is to obtain the explicit expression for Pl(B), where B is a unit disk (ball)
in R2. Disk is the second most natural candidate for such tryings (after irrational rectangles), since we
explicitly know all of its eigenvalues and eigenfunctions, and we know that its eigenfunctions have some
good multiplicity properties. Our main result is the following.

Theorem 2.
Pl(B) = 8 sup

x>0

{
x (cos θ(x))

2
}

= 0.4613019 . . . ,

where θ = θ(x) is the solution of the transcendental equation

tan θ − θ = πx, θ ∈
(

0,
π

2

)
.

Proof. Let B := {x ∈ R2 : |x| < 1}. By a separation of variables, it is not hard to see that any
eigenfunction (up to rotation) can be expressed in the form

ϕν,k(r, θ) = Jν(jν,kr) cos(νθ), ν ∈ N ∪ {0}, k ∈ N,

and λν,k = j2ν,k is the eigenvalue associated with ϕν,k. Here jν,k is the k-th zero of the ν-th Bessel
function Jν . Any eigenvalue λ0,k has multiplicity 1 (associated eigenfunction is radial), while any other
eigenvalue has multiplicity 2 (associated eigenfunctions are ϕν,k and its rotation). Clearly, µ(ϕ0,k) = k
and µ(ϕν,k) = 2νk for ν ∈ N.

Note that λν,k is represented by two indexes ν, k, and it is not straightforwardly clear how to put λν,k
explicitly in the increasing order as λn. However, since we are interested in the behavior as n → ∞, we
use the Weyl law which, for Ω = B, can be read as

n = λn
|B|2

4π2
+ o(λn) =

λn
4

+ o(λn).
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Hence, noting that for any λn there exists a unique pair (νn, kn) such that λn = λνn,kn , we get

n =
λνn,kn

4
+ o(λνn,kn) =

j2νn,kn
4

+ o(j2νn,kn).

Recalling that µ(ϕν,k) = (2ν + σ(ν))k, where σ(0) = 1 and σ(ν) = 0 for ν ∈ N, we then deduce that

Pl(B) = lim sup
n→∞

4(2νn + σ(νn))kn
j2νn,kn

.

Extracting a subsequence (still denoted by {n}) which delivers the value Pl(B), omitting (for simplicity)
subindex for (νn, kn), and noting that n→∞ iff ν + k →∞, we obtain

Pl(B) = lim
ν+k→∞

4(2ν + σ(ν))k

j2ν,k
.

All we need now is to study the behavior of jν,k as ν + k → ∞. Let us immediately note that the
sequence ϕ0,k cannot be a maximizing sequence for Pl(B) since otherwise the inequality j0,k > kπ − π

4
(see [4, Eq. (1.2)]) yields

Pl(B) = lim
k→∞

4k

j20,k
≤ lim
k→∞

4k

π2(k − 1)2
= 0,

but we will see later that Pl(B) > 0. Thus, we always assume that ν ∈ N, and hence µ(ϕν,k) = 2νk and

Pl(B) = lim
ν+k→∞

8νk

j2ν,k
. (1)

Note first that the following inequality is satisfies for all ν ≥ 0 and k ∈ N:

jν,k > ν +
ν1/3

21/3

(
3π

8
(4k − 1)

)2/3

, (2)

see the result of [4] or [10] in combination with the upper estimate for the zeros of the Airy function from
[7, Theorem 2]. Therefore, estimating (2) from below by the first or the second summand, we deduce
that

Pl(B) ≤ lim
ν+k→∞

min

{
8k

ν
, C
(ν
k

)1/3}
(3)

for some constant C > 0 which does not depend on ν and k.

Suppose at the moment that Pl(B) > 0. (We will achieve this fact later.) Under this assumption, we
conclude from (3) that both ν and k tend to infinity, and there exist A1, A2 > 0 such that

A1ν < k < A2ν for all sufficiently large ν ∈ N.

Moreover, recalling that (ν, k) is a maximizing subsequence for Pl(B), we can always select a sub-
subsequence (which is hence also a maximizing subsequence for Pl(B)) still denoted by (ν, k), such that

lim
ν→∞

k

ν
= x0 ∈ [A1, A2]. (4)

That is, we have k = ν x0 + o(k) for all large ν.

Let us now use the result of Elbert [3, Section 1.5] which states that

lim
ν→∞

jν,νx
ν

=
1

cos θ(x)
, x > 0, (5)

where θ = θ(x) is the solution of the (transcendental) equation

tan θ − θ = πx, θ ∈
(

0,
π

2

)
. (6)

Combining (1), (4), and (5), we see that Pl(B) = 8x0 (cos θ(x0))
2
, and x0 have to satisfy

Pl(B) = 8x0 (cos θ(x0))
2

= 8 sup
x>0

{
x (cos θ(x))

2
}
> 0. (7)

2



Most likely, (6) and hence (7) cannot be solved in closed forms. However, one can convince himself
that the left-hand side of (6) is strictly increasing in

(
0, π2

)
, and hence the unique root of (6) and the

value of Pl(B) can be found with arbitrary precision via the standard numerical methods. In particular,
using the build-in methods of Mathematica, we obtain

Pl(B) = 0.4613019 . . . and x0 = lim
ν→∞

k

ν
= 0.3710096 . . .

The corresponding Mathematica code can look like that:

F[x_?NumericQ] := y /. FindRoot[Tan[y] - y == Pi*x, {y, Pi/4}];

FindMaximum[8*x*(Cos[F[x]])^2, {x, 0.37}]

Remark 3. The numerics suggests that the function n 7→ µ(ϕn)
n decreases to Pl(B) for large n ∈ N. For

instance,

8νk

j2ν,k

∣∣∣∣∣
ν=40000, k=0.371∗40000=14840

= 0.4613096 . . . > 0.4613019 . . . = Pl(B).

Remark 4. If we consider the Neumann eigenvalues instead of the Dirichlet ones, then the result of our
theorem remains valid. To show this fact, we argue in much the same way as in [5, Section 2.3]. Namely,
Neumann eigenfunctions have the form

ψν,k(r, θ) = Jν(j′ν,kr) cos(νθ), ν ∈ N ∪ {0}, k ∈ N,

where j′ν,k is the k-th zero of the derivative J ′ν of the Bessel function Jν . Moreover, λν,k = (j′ν,k)2 is the
associated eigenvalue. It is easy to see that, in fact, ψν,k is a restriction to B of the Dirichlet eigenfunction
ϕν,k defined on a bigger ball BR. Moreover,

R =
jν,k
j′ν,k
→ 1 as ν or k →∞,

and, clearly, µ(φν,k) = 2νk for ν, k ∈ N. The result is then follows directly.

Remark 5. One can obtain similar explicit expressions of Pleijel’s constant for some circular sectors, at
least for those whose opening angle is π/m, m ∈ N.
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