Recently, I’ve submitted a preprint to arXiv, where I studied some properties of zeros of the cross-product of Bessel functions
\begin{equation} \label{eq:cp} J_\nu(R z) Y_\nu(z) - J_\nu(z) Y_\nu(R z), \quad \nu\geq 0, ~R>1. \end{equation}
This research originated from the previous post, where I studied the explicit expression (and value) of the Pleijel constant for the disk; see also this preprint. Recall that the expression for $Pl(B)$ crucially relies on the result of Elbert & Laforgia [1] (see also [2]) on the asymptotic $j_{kx,k}$ as $k\to \infty$ for the zero $j_{kx,k}$ of the Bessel function $J_{kx}$. More precisely, Elbert & Laforgia [1] shown that
\[\lim_{k \to \infty} \frac{j_{kx,x}}{k} = \iota(x), \quad x > -1,\]where $\iota(x)$ is a unique solution of the intial value problem
\[\frac{dy}{dx} = \frac{\arccos\left(\frac{x}{y}\right)}{\sqrt{1 - \left(\frac{x}{y}\right)^2}}, \qquad y(0) = \pi.\]In fact, $\iota(x)$ admits a closed-form representation in terms of a solution of a transcendental equation (2.1) in [1]; see also Section 1.5 in [2].
However, if one would like to obtain an explicit expression for the Pleijel constant of annuli in a similar fashion as for the disk, then a similar asymptotic relation as of Elbert & Laforgia but for zeros of \eqref{eq:cp} is needed. (Let me recall that eigenvalues of the Dirichlet Laplace operator on the annulus $A_{R} = \{x \in \mathbb{R}^2:~ 1 < |x| < R\}$ are given by $\lambda_{\nu,k} = a_{\nu,k}^2$, where $a_{\nu,k}$ is the $k$-th positive zero of \eqref{eq:cp}, $\nu \in \mathbb{N}$.) Unfortunately, I was not able to find any appropriate result for $a_{\nu,k}$ in the literature. Moreover, it really seems that the theory of zeros of \eqref{eq:cp} is much much less developed than the theory of zeros of $J_{\nu}$, and only few bounds and asymptotic results are known. (But, from eigenbusiness point of view, zeros of \eqref{eq:cp} are no less important than zeros of $J_\nu$.)
-
Elbert, Á., & Laforgia, A. (1994). An asymptotic relation for the zeros of Bessel functions. Journal of Mathematical Analysis and Applications, 98(2), 502-511. DOI:10.1016/0022-247X(84)90265-8 ↩ ↩2 ↩3
-
Elbert, Á. (2001). Some recent results on the zeros of Bessel functions and orthogonal polynomials. Journal of computational and applied mathematics, 133(1-2), 65-83. DOI:10.1016/S0377-0427(00)00635-X ↩ ↩2